کانون مقالات امام جعفر صادق (ع)

بایگانی

برای دریافت اینجا کلیک کنید

دانلود مقاله A Two Stage Single Trial P300 Detection Algorithm Based on Independent Component Analysis and Wavelet Transforms تحت pdf دارای 6 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود مقاله A Two Stage Single Trial P300 Detection Algorithm Based on Independent Component Analysis and Wavelet Transforms تحت pdf کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی دانلود مقاله A Two Stage Single Trial P300 Detection Algorithm Based on Independent Component Analysis and Wavelet Transforms تحت pdf ،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن دانلود مقاله A Two Stage Single Trial P300 Detection Algorithm Based on Independent Component Analysis and Wavelet Transforms تحت pdf :

سال انتشار: 1391

محل انتشار: نوزدهمین کنفرانس مهندسی پزشکی ایران

تعداد صفحات: 6

چکیده:

Recently single trial classification of Event Related Potentials (ERPs) has received much attention to improve Brain Computer Interface (BCI) systems. BCI is one of the most recent fields in computer science which tries to help handicapped people; however, single trial EEG analysis is hard due to its low Signal to Noise Ratio (SNR). Many BCI systems are based on the analysis of ERPs such as P300. P300 is a positive peak that occurs approximately 300ms after a visual stimulus. But electrical potentials produced by blinks and eye movements cause serious problems in analyzing of EEG data. In this paper, a two stage algorithm is presented to detect P300 waves in single trial conditions in the presence of noise and artifact. In the first stage, the raw EEG data are denoised. For this reason, an ICA–wavelet based denoising method is proposed to automatically remove ocular artifact and it is also compared to other denoising methods. In the second stage, a detection algorithm is applied on denoised EEG data in order to discover P300 waves. In this method, a set of new features are extracted by applying ICA on each unknown incoming signal and finally they are classified using a neural network. The proposed method has been tested on more than 10 runs and an average accuracy of 71.5% in these runs is achieved in detecting P300 waves.


برای دریافت اینجا کلیک کنید
  • ali mo

نظرات  (۰)

هیچ نظری هنوز ثبت نشده است
ارسال نظر آزاد است، اما اگر قبلا در بیان ثبت نام کرده اید می توانید ابتدا وارد شوید.
شما میتوانید از این تگهای html استفاده کنید:
<b> یا <strong>، <em> یا <i>، <u>، <strike> یا <s>، <sup>، <sub>، <blockquote>، <code>، <pre>، <hr>، <br>، <p>، <a href="" title="">، <span style="">، <div align="">
تجدید کد امنیتی