کانون مقالات امام جعفر صادق (ع)

بایگانی

دانلود مقاله دینامیک شبکه الکتریکی تحت pdf

چهارشنبه, ۱۷ آذر ۱۳۹۵، ۰۳:۱۰ ق.ظ

برای دریافت پروژه اینجا کلیک کنید

دانلود مقاله دینامیک شبکه الکتریکی تحت pdf دارای 18 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود مقاله دینامیک شبکه الکتریکی تحت pdf کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی دانلود مقاله دینامیک شبکه الکتریکی تحت pdf ،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن دانلود مقاله دینامیک شبکه الکتریکی تحت pdf :

دینامیک شبکه الکتریکی
خلاصه:
دینامیک یک شبکه الکتریکی را می توان با دانستن صفرها و قطب‌هایش به طور کامل توصیف کرد. هر ترانسفورماتور را می توان با یک شبکه نردبانی که از حل مدار معادل آن به دست می آید بیان کرده و به کمک آن صفرها و قطب‌های تابع انتقال آن را به دست آورد.

ما می خواهیم یک راه حل کوتاه بر مبنای آنالیز فضای حالت را نشان دهیم. با استفاده از فضای حالت و توابع لاپلاس شرایط مناسبی برای محاسبه عددی فراهم می آید. با استفاده از این ترکیب در عمل دیگر محدودیتی برای سایز شبکه و توپولوژی مدار که شامل مقاومت‌ها و خازن‌ها و القاگرها است نداریم.
معرفی: ترانسفورماتورهای HV را عموما برای مقاومت در برابر over voltageها و نیروی مدار کوتاه طراحی می کنند وقوع این پدیده ها طبیعی و گریز ناپذیر است و علت عمده خرابی های ترانسفورماتور است. تشخیص به موقع برای جلوگیری از خرابی ها بسیار مهم است برای رسیدن به این مهم تست‌های تشخیص و condition montoring روشهاییی است که به ما کمک می کند تا از وقوع خطاها آگاه شویم.

از میان روشهای تشخیص، TF روش بسیار مناسبی برای تعیین خطاهای دی الکتریک است و تغیر شکل‌های مکانیکی است. [1]
چنانچه از این روش برای تشخیص استفاده کنیم ،تفسیر بهتر و دقیق‌تر TF برای شناسایی خطا الزامی است. مطالب جالب و متنوعی در مورد آنالیز مدار معادل ترانسفورماتورها و قطب‌ها و صفرهای تابع تبدیل با توجه به نوع سیم بندیها و تاثیر آنها بر روی یکدیگر (inter action) به طور کامل بحث شده است.

همانطور که در ‌[2] اشاره شده است ، اگر صفر و قطب های یک سیستم یا شبکه الکتریکی را بدانیم می توانیم دینامیک آن را به طور دقیق تعریف کنیم. به این وجود تاثیر صفرها در شکل تابع تبدیل خیلی مورد توجه نبوده است. اما در [2] تفسیرهای مفیدی از صفر تابع تبدیل اعلام شده است و حذف صفر و قطب‌های نزدیک به هم را به خوبی بیان کرده است آنچه مشخص است دانستن صفرها همانطور که انتظار می رود مفید است. به ویژه وقتی بخواهیم جزئیات بیشتری در رابطه با سیم بندی‌های چند گانه و تداخل (interaction) آنها بدانیم.

شکل (1) مدار معادل یک ترانسفورماتور در سیم پیچ را نشان می دهد. محاسبه فرکانس‌های طبیعی و توزیع ولتاژ دو موضوع مورد علاقه ماست. موارد زیر به عنوان نکاتی هستند که در نمایش مدار معدل سایز بزرگ و تحلیل آن باید مورد توجه قرار گیرند.
معمولا برای نمایش بهتر و همچنین برای به دست آوردن تمام فرکانس‌های طبیعی مدار قسمت‌هایی را به مدار اضافه می‌کنیم.
برای تصحیح تفسیر و درک بهتر تابع تبدیل اندازه گیری شده از ترانسفورماتور بسیار ضروری است تمام تداخل بین سیم پیچ‌ها را در نظر بگیریم [3].
برای اینکه پاسخ ما واقعی تر گردد باید اتلاف‌ها را در نظر بگیریم.

جای شکل
.IIراهکارهای موجود درحل مسائل
در این قسمت اشاره کوتاهی به متدهای موجود برای حل شکل (1)
(برای توزیع ولتاژ و فرکانس های طبیعی کرده ایم.
1) اگر چه نرم افزارهای برای آنالیز مدار را می توانیم مورد استفاده قرار دهیم اما آنها فقط شماتیکی از نتیجه TF را نشان می دهند و اطلاعات کافی درباره قطب وصفر به ما نمی دهند . زیرا در این نرم افزارهای تمایز بین دو قطب نزدیک به هم و یا جفت صفر و قطب نزدیک به هم ( حذف صفر و قطب ) را بسیارمشکل می توان تشخیص داد.

2) در اواسط دهه 1950 یک روش از سوی ABETTI [4] پیشنهاد شد و او از آنالیز گره ای برای آنالیز مدار معادل یک سیستم که شامل سیم پیچی دو کوپله بودند استفاده کرد که فقط برای تعیین فرکانس های طبیعی مدارهای سایز کوچک مورد استفاده قرار گرفت .
3) در سال 1964، Guruaij [5] متد پاسخ توسعه یافته را ارائه کرد که بر مبنای راهکار مقادیر ویژه بود. این روش به ما در به دست آوردن فرکانس‌های طبیعی و توزیع ولتاژ کمک می کند و مورد استفاده برای شبکه های بزرگ است.
4) در سال 1977 و Degene ff [6] یک روش مشابه که از ماتریس گره ای ادمیتانس بود ارائه داد یکی از شرایط آن بدین صورت است که اتلاف را در نظر نگیریم.
5) FERGETAD [7] در سال 1974 یک راهکار برمبنای فرمول فضای حالت برای محاسبه نوسانات ارائه داد در این روش قطب ها مستقیما از مقادیر ویژه سیتم و صفرها از معکوس سیستم بدست می آمد که روش سر راستی نیست.
III .محاسبه تابع تبدیل به کمک فضای حالت:
روش متغیر حالت یک روش بسیار کارآمد برای توصیف رفتار دینامیک یک سیستم یا شبکه روش متغیر حالت است KUH وRohrer [8] کارهایی روی آن برای تحلیل شبکه انجام داده اند و نتایج را اعلام کرده اند . فضای حالت برروی سیستم غیر خطی متغیر با زمان مانند سیستم جایی که روشهای کلاسیک از توصیف آن عاجز بودند گسترش یافته است (1)

به طوری که کیفیت رفتارسیستم،پسیویته، با زمان خطی ، پایداری و ; به راحتی با مشخصات متغیر حالت قابل بیان است. از مزایای دیگر این روش،سیستم با معادله دیفرانسیل مرتبه اول توصیف می شود و برروی برنامه نویسی بر روی کامپیوتر های دیجیتال مناسب است .
A تعریف ها.
حالت یک سیستم باید اطلاعات کاملی از دینامیک سیستم به ما بدهد یک انتخاب مناسب برروی متغیرهای حالت آن است که مجموعه ای معادلات دیفرانسیل خطی مرتبه اول که از هم مستقل هستند را انتخاب کنیم.
[9] .
عمومی شکل که برای معادلات خطی lti بیان می شود
X : متغیرهای حالت
: مشتق زمانی متغیرهای حالت
U : بردار ورودی
Y بردار خروجی
(A,B.C,D) :ماتریس های ثابت هستند
B: انتخاب متغیر حالت

برای یک سیستم که مورد آنالیز قرار می گیرد انتخاب متغیرهای حالت یکتا نیست . انتخاب تصادفی متغیرهای حالت ممکن است پیچیدگی را افزایش دهد. برای اجتناب ازاین حالت ها ، راهنمایی هایی برای انتخاب متغیر حالت وجود دارد .
متغیرهای حالت معمولاً با کمک المان های ذخیره کننده انرژی تعیین می شوند در واقع ما به تعداد المان های مستقل در یک شبکه متغیر حالت کمتری داریم به طور مثال در شکل (1) تعداد متغیرهای حالت کمتر از عناصر ذخیره کننده انرژی است [10]. بر پایه این مدل جریان های اندوکتانس ها و ولتاژ خازن ها را به عنوان متغیرهای حالت مطلوب در نظر می گیریم . به عنوان مثال در یک سیستم به کمک گراف ، گره ها را مشخص می کنیم درختی که از عناصر ذخیره کننده تشکیل میدهد و از همه گره‌ها می‌گذرد را می‌توان به عنوان متغیر حالت در نظر گرفت

برای مدل مدارنشان داده شده درشکل (1) متغیرهای حالت را بدین صورت انتخاب می کنیم .
1) جریان القاگرهای سیم پیچ اولیه
X1=i1 , X2=i2 , Xn1= in1
2) جریان القاگرهای سیم پیچ ثانویه
Xn+1= , …. , Xn1+n2= n2
3) ولتاژ های گره سیم پیچی اولیه
Xn1+n2+1=e2
Xn1+n2+1=e3, … , X2n1+n2-1=en1
4) ولتاژ های گره سیم پیچی ثانویه

X2n1+n2= 2
X2n1+n2+1=
.X2n1+2n2-2= n2

بنابراین تعداد متغیرهای حالت کل=2n1_2n2-2 را بدست می آید.
C : فرمول بندی مدل حالت
معادلات حالت که در اینجا فرمول بندی می شود بروی یک ترانسفور ماتور دو سیم پیچی شکل (1) است که در ثانویه آن مدار کوتاه است. وقتی ترمینال سیم پیچی دومی حالتی دیگر است به طور مشابه فرمول بندی میشود
1) مشتق های زمانی جریان های القایی :
V1 تا Vn1 و Vn1 تا نمایش دهنده ولتاژ القاگرهای طرف اولیه و ثانویه باشند همین طور ‌‌‌‍[L] نمایش دهند ماتریس اندوکتانسهای سلف‌ها و اندوکتانس های متقابل مدار می باشند. رابطه بین مشتق جریان اندوکتانس با ولتاژ دو سر آن از رابطه (4) بدست می آید.
به طوری که با توجه به اینکه سیم پیچی طرف دوم اتصال کوتاه است داریم:

(R) را ماتریس قطری با رابطه زیر است

اگر را اینطور تعریف کنیم

با استفاده از (6) و (7) و ولتاژ گره ها و به کمک (5) بدین صورت ساده می شود.
اگر بر ماتریس های متشق زمانی جریان‌های القاگر و ولتاژ گره‌ها ولتاژهای ورودی دلالت کنند و به این شکل توصیف کنیم به طوری که
رابطه (8) تبدیل می شود به

بنابراین مشتق زمانی جریان القاگرها به جریان القاگر و ولتاژ گره ها و ولتاژ ورودی وابسته می شود.
به کمک قانون KCL برای مدار شکل (1) داریم
که ‍ ماتریس کپسیتانس گره ای مدار می باشد. معادلات بالا را می توان به صورت زیر نوشت.
جایی که ‍]T] یک ماتریس (n1+n2)x(n1+n2) است و به صورت زیر توصیف می شود.
جایی که [1T] ماتریس با بعد n1*n1 است و به صورت زیر توصیف می شود.
[2T] همان شکل [1T] را خواهد داشت با این تفاوت که n2*n2 است. با توجه به این که مدار دومی اتصال کوتاه است. رابطه (14) تبدیل خواهد شد:
که ‍]k1] در واقع (n1+1) ستون [K] است.

نظر به اینکه انتهای گره های خطوط سیم پیچی اولیه و ثانویه به پتانسیل e1 (ولتاژ ورودی) و طرف دیگر آن o است کاربرد KCL برای این گره‌ها معادلات اضافه را نتیجه می دهد.
برای اجتناب از این اضافه ها رابطه (17) را به این صورت اصلاح می کنیم .
با جدا سازی مشتقات متغیرهای حالت و ولتاژ ورودی رابطه بالا به صورت زیر اصلاح می شود.

جایی که ‍‌[Ta] و مطابق اولین و امین سطر و است.
به طوری که و از معادله استتناج می شود به طوری که
اگر و ماتریس هایی باشند که مشتق زمانی ولتاژ گره ها را به جریان های القاگر و مشتق زمانی ولتاژ ورودی مربوط می سازند آنگاه داریم

(جمله 19) به صورت زیر در می آید بنابراین مشتق زمانی وولتاژ گره ها به صورت جریان القاگر و مشتق زمانی ولتاژ وروی توصیف می شود
3) معادله حالت : برروی مدل مدار معادله حالت با ترکیب رابطه (12) و(24) به صورت زیر فرمول بندی می شود.
x و بردار متغیر حالت و مشتق مرتبه اول آن است و u نیز بردار ورودی را توصیف می کند به طوری که

و ماتریس [A] و[B] به این صورت تعریف می شوند به طور کلی معادلات حالت مشتق زمانی مرتبه اول متغیرهای حالت را به متغیرهای حالت ومحرک آن مربوط می سازد و به طوریکه شامل هیچ کات ست از القاگرها و درختی از خازن ها نیست [11].


برای دریافت پروژه اینجا کلیک کنید
  • ali mo

نظرات  (۰)

هیچ نظری هنوز ثبت نشده است
ارسال نظر آزاد است، اما اگر قبلا در بیان ثبت نام کرده اید می توانید ابتدا وارد شوید.
شما میتوانید از این تگهای html استفاده کنید:
<b> یا <strong>، <em> یا <i>، <u>، <strike> یا <s>، <sup>، <sub>، <blockquote>، <code>، <pre>، <hr>، <br>، <p>، <a href="" title="">، <span style="">، <div align="">
تجدید کد امنیتی